Proofs of two conjectures of Kenyon and Wilson on Dyck tilings

نویسنده

  • Jang Soo Kim
چکیده

Recently, Kenyon and Wilson introduced a certain matrix M in order to compute pairing probabilities of what they call the double-dimer model. They showed that the absolute value of each entry of the inverse matrix M−1 is equal to the number of certain Dyck tilings of a skew shape. They conjectured two formulas on the sum of the absolute values of the entries in a row or a column of M−1. In this paper we prove the two conjectures. As a consequence we obtain that the sum of the absolute values of all entries of M−1 is equal to the number of complete matchings. We also find a bijection between Dyck tilings and complete matchings. Résumé. Récemment, Kenyon et Wilson ont introduit une certaine matrice M afin de calculer des probabilités d’appariement dans ce qu’ils appellent le modèle double-dimère. Ils ont montré que la valeur absolue de chaque entrée de la matrice inverse M−1 est égal au nombre de pavages de Dyck d’une certaine forme gauche. Ils ont conjecturé deux formules sur la somme des valeurs absolues des entrées dans une rangée ou une colonne de M−1. Dans cet article, nous prouvons les deux conjectures. En conséquence on obtient que la somme des valeurs absolues de toutes les entrées de M−1 est égale au nombre de couplages parfaits. Nous trouvons aussi une bijection entre les pavages de Dyck et les couplages parfaits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyck tilings , linear extensions , descents , and inversions ( extended abstract )

Dyck tilings were introduced by Kenyon and Wilson in their study of double-dimer pairings. They are certain kinds of tilings of skew Young diagrams with ribbon tiles shaped like Dyck paths. We give two bijections between “cover-inclusive” Dyck tilings and linear extensions of tree posets. The first bijection maps the statistic (area + tiles)/2 to inversions of the linear extension, and the seco...

متن کامل

Generalized Dyck tilings (Extended Abstract)

Recently, Kenyon and Wilson introduced Dyck tilings, which are certain tilings of the region between two Dyck paths. The enumeration of Dyck tilings is related with hook formulas for forests and the combinatorics of Hermite polynomials. The first goal of this work is to give an alternative point of view on Dyck tilings by making use of the weak order and the Bruhat order on permutations. Then w...

متن کامل

Double-Dimer Pairings and Skew Young Diagrams

We study the number of tilings of skew Young diagrams by ribbon tiles shaped like Dyck paths, in which the tiles are “vertically decreasing”. We use these quantities to compute pairing probabilities in the double-dimer model: Given a planar bipartite graph G with special vertices, called nodes, on the outer face, the doubledimer model is formed by the superposition of a uniformly random dimer c...

متن کامل

Tiling a Polygon with Two Kinds of Rectangles

We fix two rectangles with integer dimensions. We give a quadratic time algorithm which, given a polygon F as input, produces a tiling of F with translated copies of our rectangles (or indicates that there is no tiling). Moreover, we prove that any pair of tilings can be linked by a sequence of local transformations of tilings, called flips. This study is based on the use of J. H. Conway’s tili...

متن کامل

Results from Prior Nsf Support

During the past five years, the PI has received funding from individual grants from the National Science Foundation and the National Security Agency, as follows: DMS 9500936 (Random Tilings, 1995-1998); DMS 9803249 (Research on Tilings, 1999-2003). He also received funding from the National Security Agency, the most recent of which was MDA904-00-1-0060. As part of these grants, the PI has also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2012